69传媒

Science

69传媒 Learn by Arguing in Science Labs

By Sarah D. Sparks 鈥 October 08, 2013 | Corrected: February 21, 2019 4 min read
  • Save to favorites
  • Print
Email Copy URL

Corrected: An earlier version of this story gave an incorrect university affiliation for one of the Florida-based research teams. They are with Florida State University in Tallahassee, Fla.

Teaching students to argue, question, and communicate more like real scientists may also help them understand scientific concepts more deeply, according to several ongoing research projects highlighted at the Society for Research in Educational Effectiveness conference held here last month.

Scientific argument and inquiry skills鈥攁s separate from basic science-concept knowledge鈥攁re gaining a higher profile in science classes, as schools work to align their instruction with common content standards.

Both the Common Core State Standards for reading and mathematics and the Next Generation Science Standards have increased the focus within their disciplines on skills such as constructing and evaluating arguments, complex communications, disciplinary discourse, and critical thinking, said James W. Pellegrino, a co-director of the Learning Sciences Research Institute at the University of Illinois-Chicago.

鈥淎lthough some think of these as general cognitive competencies, it turns out that reasoning and argumentation have to be disciplinary-based,鈥 Mr. Pellegrino said. 鈥淩eason and argumentation in literature is not the same as it is in history, is not the same as it is in science.鈥

Eight-Step Process

Florida State University鈥檚 laboratory school and local Gainesville-area secondary schools are testing a new method to teach reason and argumentation directly.

In a model called 鈥argument-driven inquiry,鈥 each laboratory task involves an eight-step process, beginning with the teacher presenting a problem and small groups of students choosing on their own method and experimental approach to investigate it.

The students collect and analyze their data and develop arguments to present to the rest of the class. Based on those discussions, the students may collect more data, reflect on their findings, and write up an 鈥渋nvestigation report鈥 that has to go through a double-blind peer review process, modeled on the peer review boards that professional journals use to screen scientific papers submitted for publication. Each student then revises his or her work and submits a final report.

In a pilot comparison study of 265 8th grade students in 16 classes at both the laboratory school and regular district-run schools, researchers at the university鈥檚 Center for Educational Research in Mathematics, Engineering, and Science found students using the traditional lab model engaged in more structured lab tasks than those in the argument-driven labs, but the latter labs went deeper during each task.

69传媒 in the argument-driven inquiry labs designed experiments, argued from evidence, and gave oral presentations as part of every lab task.

By contrast, students in traditional labs designed their own investigations 17 percent of the time or less, argued based on evidence in 7 percent to 20 percent of lab tasks, and gave oral presentations in only 7 percent to 10 percent to lab tasks.

After a year, the students in both lab models significantly improved their knowledge of scientific concepts, but only the students in the argument-driven inquiry labs had improved in science writing and in their understanding of the nature and development of science knowledge.

Moreover, the students who were taught in the pilot labs showed nearly twice as much improvement in their ability to use and generate scientific explanations and arguments as the students in the traditional labs.

鈥淔rom this, we think [argument-driven inquiry] demonstrates promise, that there鈥檚 some potential there to enhance students鈥 science proficiency,鈥 said Jonathon Grooms, a co-author of the study and a senior research scientist at the Center for Educational Research in Mathematics, Engineering and Science.

Intellectual Messiness

Moving toward argument-driven lab models could mean a shift in how students experience science, other researchers said.

Real laboratory work is messy: Theories fall apart during experiments, teammates disagree over interpreting the results, and data don鈥檛 always neatly answer the question.

By contrast, students often avoid intellectual messiness in traditional school science labs, according to another analysis presented at the conference by researchers Janice Gobert and Juelaila J. Raziuddin of Worcester Polytechnic Institute in Massachusetts and Kenneth R. Koedinger, a computer science psychologist at Carnegie Mellon University in Pittsburgh.

They found that middle and early high school students often avoid setting a hypothesis that could be rejected, try to design and conduct experiments that would confirm biases they already hold, and reject evidence from an experiment that contradicts what they thought going into it.

Unmasking Misconceptions

The researchers used an online science homework platform to tweak the way 145 8th grade students recorded an experiment log. In 27 percent of the logs, for example, students correctly collected data during the experiment and entered a 鈥渟cientifically accurate鈥 interpretation of those data. But when asked to explain their findings, the students showed misunderstandings of the experiment.

The vast majority of these students鈥 descriptions showed that they privately鈥攁nd incorrectly鈥攊nterpreted the results to confirm their initial hypotheses.

Though science, technology, engineering, and math programs have gained popularity in schools as a career-readiness issue, developing an understanding of the scientific process and scientific arguments is critical for students 鈥渞egardless of whether we get them excited about a STEM career,鈥 said Heidi Schweingruber, the deputy director of the board on science education at the National Research Council, who commented on the studies but was not part of them.

鈥淲e don鈥檛 need everybody to be a Ph.D. scientist or engineer,鈥 Ms. Schweingruber said. 鈥淲hat we need is a citizenry that really appreciates [scientific learning], ... that understands it and can use it to make decisions.鈥

Related Tags:

Coverage of informal and school-based science education, human-capital management, and multiple-pathways-linked learning is supported by a grant from the Noyce Foundation, at www.noycefdn.org. Education Week retains sole editorial control over the content of this coverage.

Events

This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
Artificial Intelligence Webinar
AI and Educational Leadership: Driving Innovation and Equity
Discover how to leverage AI to transform teaching, leadership, and administration. Network with experts and learn practical strategies.
Content provided by 
This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
School Climate & Safety Webinar
Investing in Success: Leading a Culture of Safety and Support
Content provided by 
Assessment K-12 Essentials Forum Making Competency-Based Learning a Reality
Join this free virtual event to hear from educators and experts working to implement competency-based education.

EdWeek Top School Jobs

Teacher Jobs
Search over ten thousand teaching jobs nationwide 鈥 elementary, middle, high school and more.
Principal Jobs
Find hundreds of jobs for principals, assistant principals, and other school leadership roles.
Administrator Jobs
Over a thousand district-level jobs: superintendents, directors, more.
Support Staff Jobs
Search thousands of jobs, from paraprofessionals to counselors and more.

Read Next

Science 69传媒 and Writing Like a Scientist
English and science teachers in Missouri middle schools collaborate to help students tackle complex scientific texts.
6 min read
Illustration of magnet attracting letters.
Dan Page for Education Week
Science One Change That Can Get More Girls, 69传媒 of Color Taking Computer Science
Making computer science classes a graduation requirement can be a powerful strategy.
5 min read
Two teen girls, one is a person of color and the other is white, building something in a science robotics class.
iStock/Getty
Science A Marine Science Program in a Surprising Place Shows 69传媒 New Career Options
It's hard to find teachers for STEM subjects, but a school system in a landlocked state has found a way to make it work with marine science.
5 min read
Nolden Grohe, 16, feeds exotic fish during Marine Biology class at Central Campus in Des Moines, Iowa, on Sept. 27, 2024.
Nolden Grohe, 16, feeds exotic fish during Marine Biology class at Central Campus in Des Moines, Iowa, on Sept. 27, 2024. The Iowa school system has had a hands-on program for three decades that has introduced students to career possibilities in aquarium science, marine biology, and related fields.
Rachel Mummey for Education Week
Science The Biggest Barriers to STEM Education, According to Educators
Educators share the challenges schools face in teaching STEM.
1 min read
Photograph of a diverse group of elementary school kids, with a white male teacher, working on a robot design in the classroom
E+