69ý

Opinion
Science Opinion

Don’t Teach the Controversy

By Paul Horwitz — March 01, 2011 5 min read
  • Save to favorites
  • Print
Email Copy URL

The argument is disarming. Living organisms are often remarkably adapted for a particular purpose—so much so that it seems as if they must have been created by a purposeful designer. And, at first blush, that theory appears much more plausible than the proposition that the exquisite complexity of nature arose entirely by unplanned, natural causes. Why then do we refuse to allow the creationist model to be presented and discussed in science class as an alternative to the theory of evolution? Isn’t science supposed to be open to opposing opinions? Are we not repeating the error of those who refused to look through Galileo’s telescope for fear that they might discover something new? Why can’t we, in the words of President George W. Bush, “teach the controversy”?

The argument is a hardy perennial. An Education Week article from late last year (“Evolution Projects Yield Results,” Nov. 17, 2010) described a National Science Foundation-supported project that teaches “evolution readiness” to 4th graders by having them run virtual experiments with computer models that evolve by natural selection. As the director of that project, I feel strongly that creationism has no place in science class.

My opinion is that creationism in all its forms, including “intelligent design,” is not science; and that it is vitally important that we not teach nonscience as if it were science.

Creationism is not science because it introduces causes outside of nature in order to explain observations of nature.”

The early-20th-century physicist Wolfgang Pauli, known equally for his exclusion principle and his biting wit, once famously said of a proposed theory in a research paper, “Not only is it not right, it’s not even wrong.” The identity of the research paper that incurred Pauli’s displeasure is lost to history, but his quip is an apt description of the assertion that the adaptations of organisms can be “explained”—or “explained away”—by positing that an unknown and unknowable entity designed them that way. Such a theory can, in fact, never be proved wrong. It can never even be revised because, in contrast to evolution, which has undergone continual revision since Darwin’s day, creationism makes no testable predictions other than the trivial one that living creatures should look as though they were designed.

Creationism is not science because it introduces causes outside of nature in order to explain observations of nature. Theories like that do not foster inquiry; rather, they close off discussion. Discoveries of seemingly “designed” organisms are taken as “proof” of the theory, and observations of suboptimal design are viewed as indications that the external designer, though “intelligent” is not “perfect.” When all the fuss is over, nothing is ever discovered—or can ever be discovered—that sheds new light, connects previously disconnected data, offers new insights, or generates new knowledge.

That’s why creationism shouldn’t be taught as science, not because it’s wrong, but because it isn’t science. (Though I would certainly support, and would love to teach, a class that contrasted creationism and science in order to help students appreciate the difference.)

So why is it so important that we not teach nonscience as science?

It is important because science and nonscience are radically different, and the difference has critical implications. Scientific theories make testable predictions about the world, predictions that often extend well beyond anything the inventor of the theory had in mind.

Darwin had never heard of the DNA molecule, so he couldn’t possibly have anticipated its role in evolution. A century later, when the central function of DNA as the carrier of genetic information was discovered, Darwin’s theory of evolution predicted that the DNA of different species ought to differ in very specific ways. For example, two species that diverged from a common ancestor—say dogs and wolves—a few million years ago (relatively recently in evolutionary terms) ought to have very similar DNA. However, more distantly related species—giraffes and skunks, or snakes and butterflies—are predicted to be less similar at the molecular level because they diverged from a common ancestral species hundreds of millions of years ago. In other words, the more recently any two species diverged from their ancestral species, the more similar their DNA ought to be.

This is a powerful prediction! It opens up a whole new line of evidence, entirely unknown to Darwin and his contemporaries, that enables one to construct a “family tree” comprising all living things on earth.

The DNA evidence is accumulating rapidly, and evolution still stands tall. It turns out that subtle differences in the DNA of humans from different subpopulations may have profound implications for combating disease. Scientists are sorting out the details, but the basis of the technique is pure evolution. People who have lived for many generations in parts of the world where a certain disease is endemic have been subjected to intense selective pressure, affecting their genetic makeup. In other words, these individuals have evolved to acquire a resistance to the disease. By studying their DNA, we may be able to put that knowledge to work for the rest of us some day.

It’s an exciting approach to solving an important problem, and it would never have occurred to anyone if we had just left it at, “Living creatures look designed, so there must be a designer.” Or, “We don’t know anything about this designer, and there’s no way to find out anything, so let’s just leave it at that.”

The goal of science is to discover things, to create new knowledge, to understand new phenomena. Nonscience does none of these things. Confronted by something it can’t explain, nonscience introduces another element it doesn’t understand for the purpose of explaining what it originally could not. Not only does this lead to an infinite regress (who designed the designer?), it also eliminates, even worse, any opportunity to discover natural explanations for natural phenomena. And that makes a huge difference.

We live in an age when the extraordinary success of science has brought with it unprecedented problems that can be solved only with the help of science. For this reason alone, to allow nonscience to be taught as though it were science would be a mistake of literally global dimensions.

A version of this article appeared in the March 09, 2011 edition of Education Week

Events

School & District Management Webinar Crafting Outcomes-Based Contracts That Work for Everyone
Discover the power of outcomes-based contracts and how they can drive student achievement.
This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
School & District Management Webinar
Harnessing AI to Address Chronic Absenteeism in 69ý
Learn how AI can help your district improve student attendance and boost academic outcomes.
Content provided by 
School & District Management Webinar EdMarketer Quick Hit: What’s Trending among K-12 Leaders?
What issues are keeping K-12 leaders up at night? Join us for EdMarketer Quick Hit: What’s Trending among K-12 Leaders?

EdWeek Top School Jobs

Teacher Jobs
Search over ten thousand teaching jobs nationwide — elementary, middle, high school and more.
Principal Jobs
Find hundreds of jobs for principals, assistant principals, and other school leadership roles.
Administrator Jobs
Over a thousand district-level jobs: superintendents, directors, more.
Support Staff Jobs
Search thousands of jobs, from paraprofessionals to counselors and more.

Read Next

Science 69ý and Writing Like a Scientist
English and science teachers in Missouri middle schools collaborate to help students tackle complex scientific texts.
6 min read
Illustration of magnet attracting letters.
Dan Page for Education Week
Science One Change That Can Get More Girls, 69ý of Color Taking Computer Science
Making computer science classes a graduation requirement can be a powerful strategy.
5 min read
Two teen girls, one is a person of color and the other is white, building something in a science robotics class.
iStock/Getty
Science A Marine Science Program in a Surprising Place Shows 69ý New Career Options
It's hard to find teachers for STEM subjects, but a school system in a landlocked state has found a way to make it work with marine science.
5 min read
Nolden Grohe, 16, feeds exotic fish during Marine Biology class at Central Campus in Des Moines, Iowa, on Sept. 27, 2024.
Nolden Grohe, 16, feeds exotic fish during Marine Biology class at Central Campus in Des Moines, Iowa, on Sept. 27, 2024. The Iowa school system has had a hands-on program for three decades that has introduced students to career possibilities in aquarium science, marine biology, and related fields.
Rachel Mummey for Education Week
Science The Biggest Barriers to STEM Education, According to Educators
Educators share the challenges schools face in teaching STEM.
1 min read
Photograph of a diverse group of elementary school kids, with a white male teacher, working on a robot design in the classroom
E+